Unit 2 Study Guide: Addition and Subtraction Equations

Lesson 1: Addition and Subtraction Equations

Addition	Signs are the same, find the sum, keep the sign	Signs are different, find the difference, keep the sign of the larger number

Sum: the answer to an addition problem

```
Subtraction

Difference: the answer to a subtraction problem
Opposite Number: change the sign. The opposite of 32 is -32 .
The opposite of -45 is +45
Practice:

\section*{Solving Equations: GET THE LETTER (VARIABLE) BY ITSELF!!!!!}

\section*{Method 1: Send and Change}

Send the number(s) to the other side of equation and change the sign
Example: \(\quad c+4=11\)
\[
\begin{aligned}
& c=11-4 \quad(+4 \text { is sent to the other side and becomes }-4) \\
& c=7
\end{aligned}
\]
\[
x+5=7
\]


\section*{Method 2: Use Transformations}

Get the letter (variable) by itself but doing the opposite operation
\[
\begin{array}{lll}
\text { Example: } & \mathrm{c}+4=11 & 4 \text { is being added to } \mathrm{c} \\
\mathrm{c}+4-4=11-4 & \text { Subtract } 4 \text { from both sides } \\
\mathrm{c}=7 &
\end{array}
\]

Transformation Steps
1. Look at the side of the equation that has the variable - what math operation do you see?
2. Do the opposite operation on BOTH sides
3. Simplify
4. Check by substituting answer into original equation

Practice Problems from Class:

Lesson 3 \& 5: Multiplication and Division Equations
\begin{tabular}{|l|l|l|}
\hline Multiplication & \begin{tabular}{l} 
Signs are the same, answer is \\
positive
\end{tabular} & \begin{tabular}{l} 
Signs are different, answer is \\
negative
\end{tabular} \\
\hline Division & \begin{tabular}{l} 
Signs are the same, answer is \\
positive
\end{tabular} & \begin{tabular}{l} 
Signs are different, answer is \\
negative
\end{tabular} \\
\hline
\end{tabular}

Product: the answer to a multiplication problem
Quotient: the answer to a division problem

\section*{Transformation Steps}
1. Look at the side of the equation that has the variable - what math operation do you see?
2. Do the opposite operation on BOTH sides
3. Simplify
4. Check by substituting answer into original equation

Multiplication Example:
\(7 \mathrm{~g}=21 \quad\) 1. I see multiplication on the side with the variable g 7 g means 7 times the variable g
\(\overline{Z g}=\underline{21} \quad\) 2. The opposite of multiplication is division, so I divide both sides by 7
\(\mathrm{g}=3\)
\(3.7 \div 7=1\), so the 7 's cancel out on the left \(21 \div 7=3\)

\section*{Division Example:}
\[
\begin{aligned}
& \frac{y}{8}=3 \\
& \frac{y}{8} \cdot 8=3 \cdot 8 \\
& y=24
\end{aligned}
\]
\[
\text { both sides by } 8
\]
3. The 8's cancel out on the left
4. 3 times \(8=24\)

Class Examples:

Reciprocal: 1 over the number or just FLIP IT
\begin{tabular}{|c|c|}
\hline Number & Reciprocal \\
\hline 5 & \(\frac{1}{5}\) \\
\hline\(\frac{2}{3}\) & \(\frac{3}{2}\) \\
\hline
\end{tabular}

Property of Reciprocals: when you multiply a number times its reciprocal, you get 1
Example: \(\quad 5 \times \frac{1}{5}=1\)
\[
\frac{4}{7} \times \frac{7}{4}=1
\]

Divide with Fractions: SAME, CHANGE, FLIP!
1. First fraction stays the same
2. Change the division sign to multiplication
3. Flip the \(2^{\text {nd }}\) fraction
***** You can put any number over 1 to make it a Fraction ******
Example:
\(\frac{3}{4} x=1 \quad\) Original equation
\(\frac{3}{4} x=\frac{1}{3} \quad\) Divide both sides by \(3 / 4\)
\(\frac{4}{\frac{3}{4}}=\frac{1}{\frac{3}{4}}\)
\(x=1 \cdot \frac{4}{3} \quad\) Use the reciprocal and multiply: SAME, CHANGE, FLIP!
\(x=\frac{4}{3}\)

Practice

\section*{Lesson 6: Multiple Transformations}

Equations with more than 1 operation, like this: \(2 x-4=10\)
Transformation Steps - Goal is to isolate the variable (get it alone on 1 side of the equation
1. Look at the side of the equation that has the variable - what math operation do you see?
2. If you see more than 1 math operation, remove each number one at a time. Start with the number that is FARTHEST away from the variable
3. Do the opposite operation on BOTH sides
4. Simplify
5. Check by substituting answer into original equation

Example:
\begin{tabular}{|c|c|}
\hline \(2 x-4=10\) & 1. I see subtraction and multiplication on the side with the variable \(x\) \\
\hline \(2 x-4+4=10+4\) & 2. 4 is farther away from the \(x\), so start with that. Since I am subtracting 4, then add 4 to both sides \\
\hline \(2 x=14\) & 3. I see multiplication on the side with the variable \(x\), \\
\hline \(\underline{2 x}=\underline{14}\) & so divide both sides by 2 \\
\hline 22 & \\
\hline \(x=7\) & 4. \(2 \div 2=1\), so the 2 's cancel on the left \\
\hline
\end{tabular}

\section*{Practice Examples:}

\section*{Lesson 8: Variables on Both Sides of an Equation}

Step 1: Get the variables on 1 side of the equation and the numbers on the other side

Step 2: Use transformations to isolate the variable and solve the equation Example:
\(2 m+14=4 m-16\)
\(2 m-4 m+14=4 m-4 m-16\) Subtract \(4 m\) from both sides
\(-2 m+14=-16\)
\(-2 m+14-14=-16-14 \quad\) Subtract 14 from both sides
\(-2 m=-30\)
\(\underline{-2 m}=\underline{-30} \quad\) Divide both sides by -2
-2 -2
\(\mathrm{m}=15\)
Examples from Class:

\section*{Lesson 9: Strange Solutions}

Contradiction - an equation with no solution
Example: \(\quad 3 x-2=3 x+4\)
\(3 x-3 x-2=3 x-3 x+4\)
\(-2=4 \quad\) This is never true, so this equation has no solution
Identity - an equation with infinitely many solutions
\[
\begin{array}{ll}
\text { Example: } \quad \begin{array}{ll}
3 x+9=3(x+3) \\
3 x+9=3 x+9
\end{array} & \begin{array}{l}
\text { This is always true, so ANY value for } x \text { will } \\
\\
\end{array} \\
\text { solve the equation }
\end{array}
\]

Notes and Examples from Class:```

